GPU acceleration of the particle filter: the Metropolis resampler

نویسنده

  • Lawrence Murray
چکیده

We consider deployment of the particle filter on modern massively parallel hardware architectures, such as Graphics Processing Units (GPUs), with a focus on the resampling stage. While standard multinomial and stratified resamplers require a sum of importance weights computed collectively between threads, a Metropolis resampler favourably requires only pair-wise ratios between weights, computed independently by threads, and can be further tuned for performance by adjusting its number of iterations. While achieving respectable results for the stratified and multinomial resamplers, we demonstrate that a Metropolis resampler can be faster where the variance in importance weights is modest, and so is worth considering in a performance-critical context, such as particle Markov chain Monte Carlo and real-time applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel resampling in the particle filter

Modern parallel computing devices such as the graphics processing unit (GPU) have gained significant traction in scientific computing, and are particularly well-suited to dataparallel algorithms such as the particle filter. Of the components of the particle filter, the resampling step is the most difficult to implement well on such devices, as it often requires a collective operation, such as a...

متن کامل

Parallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform

There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...

متن کامل

The Metropolis Monte Carlo method with CUDA enabled Graphic Processing Units

a r t i c l e i n f o a b s t r a c t We present a CPU–GPU system for runtime acceleration of large molecular simulations using GPU computation and memory swaps. The memory architecture of the GPU can be used both as container for simulation data stored on the graphics card and as floating-point code target, providing an effective means for the manipulation of atomistic or molecular data on the...

متن کامل

Digitize Your Body and Action in 3-D at Over 10 FPS: Real Time Dense Voxel Reconstruction and Marker-less Motion Tracking via GPU Acceleration

In this paper, we present an approach to reconstruct 3-D human motion from multi-cameras and track human skeleton using the reconstructed human 3-D point (voxel) cloud. We use an improved and more robust algorithm, probabilistic shape from silhouette to reconstruct human voxel. In addition, the annealed particle filter is applied for tracking, where the measurement is computed using the reproje...

متن کامل

An approach to Improve Particle Swarm Optimization Algorithm Using CUDA

The time consumption in solving computationally heavy problems has always been a concern for computer programmers. Due to simplicity of its implementation, the PSO (Particle Swarm Optimization) is a suitable meta-heuristic algorithm for solving computationally heavy problems. However, despite the simplicity, the algorithm is inefficient for solving real computationally heavy problems but the pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1202.6163  شماره 

صفحات  -

تاریخ انتشار 2012